Home  |  About us  |  Editorial board  |  Search  |  Ahead of print  |  Current Issue  |  Archives  |  Submit Article  |  Instructions  |  Subscribe   |  Contact us  |  Advertise  |  Login 
Journal of Ayurveda and Integrative Medicine Journal of Ayurveda and Integrative Medicine
 
Users online:14 Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
 


 
EXPERIMENTAL
Year : 2010  |  Volume : 1  |  Issue : 3  |  Page : 199-202 Table of Contents     

Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes


Industrial Technology Institute, Colombo, Sri Lanka

Date of Submission28-May-2010
Date of Decision07-Sep-2010
Date of Acceptance14-Sep-2010
Date of Web Publication20-Nov-2010

Correspondence Address:
L.D.A. Menuka Arawwawala
Industrial Technology Institute, Bauddhaloka Mawatha, Colombo 7
Sri Lanka
Login to access the Email id


DOI: 10.4103/0975-9476.72621

PMID: 21547048

Get Permissions

   Abstract 

Antioxidant and antifungal activity were determined for the essential oil of Alpinia calcarata Roscoe (Zingiberaceae) rhizomes. Its antioxidant properties were investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and thiobarbituric acid reactive substances (TBARS) assay. Butylated hydroxy toluene (BHT) and vitamin E served as positive controls. Antifungal activities were investigated against crop pathogens Curvularia spp. and Colletorichum spp. using the agar plate method. Fifty percent effective concentration (EC 50 ) and % antioxidant index of the essential oil were 45 ± 0.4 and 16.1 ± 0.2 for DPPH and TBARS assays, respectively. The degree of, the essential oil's inhibition of the growth of crop pathogens Curvularia spp. and Colletorichum spp. varied with time period its effects were higher than greater than for the positive control, daconil. In conclusion, the essential oil of A. calcarata rhizomes possess moderate antioxidant property and promising antifungal activity.

Keywords: Alpinia calcarata, antifungal activity, antioxidant power, essential oil


How to cite this article:
Arambewela LS, Arawwawala LM, Athauda N. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes. J Ayurveda Integr Med 2010;1:199-202

How to cite this URL:
Arambewela LS, Arawwawala LM, Athauda N. Antioxidant and antifungal activities of essential oil of Alpinia calcarata Roscoe rhizomes. J Ayurveda Integr Med [serial online] 2010 [cited 2014 Aug 2];1:199-202. Available from: http://www.jaim.in/text.asp?2010/1/3/199/72621


   Introduction Top


Alpinia calcarata Roscoe (Zingiberaceae) is a rhizomatous perennial herb which is commonly used in traditional medicinal systems in Sri Lanka. A. calcarata is cultivated in tropical countries including Sri Lanka, India, and Malaysia. [1],[2] In Sri Lankan, rhizomes of A. calcarata, are recommended as an aphrodisiac, and the decoction is widely used in the treatment of bronchitis, cough, respiratory ailments, diabetics, asthma, and arthritis. [2],[3],[4] Some 18 volatile constituents have been identified in the essential oil (EO) of Sri Lankan grown A. calcarata rhizomes, of which 1,8-cineol (33.3%) is the major constituent. Apart from 1,8-cineol, ∝-pinene (3.1%), camphene (4.1%), β-pinene (9.3%), p-cymene (1.4%), and limonene (4.0%) are also present. [5]

Research has shown antibacterial, [6] anthelmintic, [7] antifungal, [8] antinociceptive, [9] antioxidant, [10] gastroprotective, [11],[12] aphrodisiac, [13] and antidiabetic [14] activities in aqueous and ethanolic extracts of A. calcarata rhizomes. However, no attempt has been made to investigate the bioactivities of their EO. Therefore, this study was carried out to investigate its antioxidant power using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, and the thiobarbituric acid reactive substances (TBARS) assay, and antifungal activity against Curvularia spp. and Colletorichum spp.


   Materials and Methods Top


Plant material

Fresh A. calcarata rhizomes were collected from home gardens in Western province, Sri Lanka. The plant material was identified and authenticated by the Curator of the National Herbarium, Royal Botanical Gardens, Peradeniya, Sri Lanka. A voucher specimen (AS 01) was deposited in the Industrial Technology Institute, Colombo 7, Sri Lanka.

Preparation of the essential oil

Fresh A. calcarata rhizomes were sterilized with 1% NaOCl, rinsed with sterile distilled water and hydrodistilled for 4 h using a Clevenger arm. The EO was trapped in a mixture of n-pentane and ether (1:1 v/v), collected and weighed after evaporating the organic layer (yield 1.5 % w/w dry weight basis).

Standardization of the essential oil

Gas chromatographic profile was used to standardize the EO.

Details of the gas chromatograph operating conditions

Chromatograph: HewlettPackard 5890 Series II

Detector: Flame ionization detector

Column: DB-5 MS capillary column (30 m × 0.25 mm id, 0.25 μm film)

Initial oven temperature: 40° C

Final oven temperature: 280° C

Program rate: 10° C/min

Peaks were identified using retention time data, peak enhancement method using authentic compounds, and by comparing their mass spectra with spectra in the data bank. NMR data were obtained wherever possible.

Determination of antioxidant property of essential oil by DPPH scavenging assay

The antioxidant property was determined by measuring the remaining concentration of DPPH as described by Singh and coworkers. [15] For this assay, known concentrations of (0-100 μg/mL) EO and butylated hydroxy toluene (BHT) were placed in different test tubes. The volume was adjusted to 1 mL by adding methanol (MeOH). Five milliliters of methanolic solution of DPPH (2 mg/100 mL MeOH) were added to these tubes and shaken vigorously. The tubes were allowed to stand at room temperature for 20 min and the absorbance was measured at λ 517 nm (UV-160, Shimadzu, Japan). A control was prepared as above by adding MeOH instead of test solutions. BHT served as the positive control. This experiment was done twice, each time in triplicate.

The DPPH concentration in the reaction medium was calculated from a calibration curve analyzed by linear regression. The percentage of remaining DPPH (%DPPH REM ) of each concentration was calculated as follows:

% DPPH REM = [DPPH] T /[DPPH] C×100

where T is the experimental duration time 20 min and C is the control. The mean effective scavenging concentrations (EC 50 ) were calculated by plotting the %DPPH REM concentrations versus the concentrations of extract used.

Determination of antioxidant property of essential oil by TBARS assay

The antioxidant property was determined by measuring the oxidation of egg yolk lipids as described by Dorman and coworkers. [16] In this assay, the egg yolk (10%, v/v) solution was prepared in KCl (1.15%, w/v). It was homogenized for 30 sec and ultrasonicated for 5 min and stored at 4 °C until use. The EO, vitamin E, and BHT at 0.01% (w/v) concentrations were prepared using 8.1 % (w/v) sodium dodecyl sulphate (SDS) solution. A solution of 0.8% (w/v) thiobarbituric acid (TBA) was prepared in 1.1% (w/v) of SDS solution. Test solutions (0.1 mL) were added to tubes containing 0.5 mL egg yolk homogenate. After adding 1.5 mL of acetic acid (20%, v/v), the pH value was adjusted to 3.5 with 1 Mol NaOH. Then, 1.5 mL of 0.8% TBA was added and the final volume adjusted to 4 mL with deionized water. Samples were vortexed and left in a 95°C water bath for 60 min. When they had cooled, 5 mL of n -butanol was added, vortexed, centrifuged, and the absorbance of butanol layer was measured at λ 532 nm (UV-160, Shimadsu, Japan) against an n-butanol blank. The above procedure was followed for the control by using 0.1 mL of 8.1 % (w/v) SDS instead of the test solution. Both vitamin E and BHT served as positive controls. The experiment was done twice, each time in triplicate.

Antioxidant index percentage (AI %) was calculated using the following formula:

AI % = (1 - T/C) × 100

where, T = the absorbance of the test sample

C = the absorbance of the fully oxidized control

Determination of antifungal activity of essential oil by agar plate method

In this assay, 1000, 1500, 2000, and 2500 ppm of A. calcarata EO were tested against the activity of crop pathogens Curvularia spp. and Colletorichum spp. Daconil was used as the positive control. The authentication of Curvularia spp. and Colletorichum spp. were done by polymerase chain reaction (PCR) technique using molecular detection of these fungi. Stock solution of EO was prepared with 95% ethanol. Test solutions were added to potato dextrose agar (PDA) medium, with the temperature of the sterilized medium at 45° C. Circular fungi culture discs were kept in the center of the each plate and the diameter of the fungal culture was measured after 3, 4, 5, 6 and 7 days. Untreated PDA medium served as the control and each experiment was done in triplicate. Growth inhibition percentage was calculated by the equation (C - T/C) × 100 where C is hyphal extension (mm) of controls and T is hyphal extension (mm) of EO-treated plates.

Statistical analysis

Statistical comparisons were made using a one-way ANOVA test.


   Results and Discussion Top


As shown in [Figure 1], the EO of A. calcarata rhizomes was standardized using a gas chromatograph. Similar to the previous studies, [5] 1,8-cineol was found to be the major component in the EO of A. calcarata rhizomes. Antioxidant property of cold ethanolic extract (CEE), hot ethanolic extract (HEE), and hot water extract (HWE) of A. calcarata rhizomes have been investigated in previous studies. Further, antioxidant property of CEE was comparable to BHT, the synthetic antioxidant. [10] However, in the present investigation, EO of A. calcarata rhizomes showed a moderate antioxidant property (as judged by DPPH scavenging assay [Table 1] and TBARS assay [Table 2]) when compared to the antioxidant properties of CEE, HEE, and HWE. Antioxidants react with the free radical DPPH and convert it to 1,1-diphenyl-2-picrylhydrazine by donating a hydrogen. [17] The change in absorbance produced by this reaction was used to test the ability of EO to act as a free radical scavenger. Therefore, this indicates that DPPH radical scavenging activity of EO is due to its hydrogen-donating ability. Lipid peroxidation, which is widely recognized as a primary toxicological event, is caused by the generation of free radicals from a variety of sources including organic hydroperoxides, redox cycling compounds, and iron-containing compounds. The TBARS assay has been used to measure the degree of lipid peroxidation. TBA reacts specifically with malondialdehyde (MDA), a secondary product of lipid peroxidation. to give a red chromogen, which may then be determined spectrophotometrically. [18] The degree of the EO's inhibition of the growth of the crop pathogens Curvularia spp. and Colletorichum spp. varied with time period [Table 3]. Its antifungal activity appears to be more pronounced against Curvularia spp. and the effect was better than that of positive control, daconil. Therefore, A. calcarata essential oil can be used to prepare a natural fungicide. In conclusion, this study revealed moderate antioxidant property and promising antifungal activity of A. calcarata rhizomes.
Figure 1: Gas chromatograph of essential oil (EO) of Alpinia calcarata rhizomes
P eak no 1: α-pinene, peak no 6: 1,8-cineol, peak no 2: camphene, peak no 7: camphor, peak no 3: β-pinene, peak no 8: γ-muurolene,peak no 4: ρ-cymene, peak no 9: caratol, peak no 5: limonene, peak no 10: α-eudesmol


Click here to view
Table 1: Mean scavenging concentrations of (EC50) of essential oil of Alpinia calcarata rhizomes in DPPH free radical scavenging assay


Click here to view
Table 2: Antioxidant index percentage of essential oil Alpinia calcarata rhizomes in TBARS assay

Click here to view
Table 3: Antifungal activity of essential oil of Alpinia calcarata rhizome

Click here to view



   Acknowledgment Top


The authors express their gratitude to the National Science Foundation for the research grant (SIDA (1L) 2000/BT/03).

 
   References Top

1.Dassanayake MD, Fosberg FR. A Revised Hand Book to the flora of Ceylon, Amreind, New Delhi, India 1981. p. 517-8.  Back to cited text no. 1
    
2.Jayaweera DM. Medicinal Plants Used in Ceylon. Colombo: National Science Council of Sri Lanka; 1982. p. 213.  Back to cited text no. 2
    
3.Ramanayake L. Osu Visithuru. Publication of Department of Ayurveda. Colombo, Sri Lanka. 1994. p. 68-71.  Back to cited text no. 3
    
4.Arambewela LS, Basnayake CS, Serasinghe P, Tissera MS, Dias S, Weerasekara DR. Traditional treatment in Sri Lanka for chronic Arthritis. NARESA Printing Unit. Colombo, Sri Lanka. 1995.   Back to cited text no. 4
    
5.Arambewela LS, Kumaratunga A, Arawwawala M, Owen NL, Du L. Volatile oils of Alpinia calcarata grown in Sri Lanka. J Essent Oil Res 2005;17:124-5.   Back to cited text no. 5
    
6.George M, Pandalai KM. Investigations on plant antibiotics. Ind J Med Res 1949;37:169-81.  Back to cited text no. 6
    
7.Kaleysa RR. Screening of indigenous plants for anthelmintic action against human Ascaris lumbricoides. Indian J Physiol Pharmacol 1975;19:47-9.  Back to cited text no. 7
    
8.Pushpangadan P, Atal CK. Ethno - medico - botanical investigations in Kerala. J Ethnopharmacol 1984;111:59-77.  Back to cited text no. 8
    
9.Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. Antinociceptive activities of aqueous and etahnolic extracts of Alpinia calcarata rhizomes in rats. J Ethnopharmacol 2004;95:311-6.  Back to cited text no. 9
    
10.Arambewela LSR, Arawwawala, LDAM. Antioxidant activities of ethanolic and hot aqueous extracts of Alpinia calcarata rhizomes. Aust J Med Herbalism 2005;17:91-4.  Back to cited text no. 10
    
11.Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. Gastroprotective activity of hot ethanolic extract of Alpinia calcarata rhizomes in rats. Ceylon J Med Sci 2005;48:1-11.  Back to cited text no. 11
    
12.Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. 2009. Effect of Alpinia calcarata rhizomes on ethanol - induced gastric ulcers in rats. Phcog Mag 2009;4:226-31.  Back to cited text no. 12
    
13.Ratnasooriya WD, Jayakody JR. Effects of aqueous extract of Alpinia calcarata rhizomes on reproductive competence of male rats. Acta Biol Hung 2006;57:23-35.  Back to cited text no. 13
    
14.Arambewela LSR, Arawwawala LDAM, Ratnasooriya WD. Hypoglycemic and antihyperglycemic activities of the aqueous and the ethanolic extracts of Alpinia calcarata rhizomes in rats. Phcog Mag 2009;5:412-8.  Back to cited text no. 14
  Medknow Journal  
15.Singh RP, Murthy KN, Jayaprakasha GK. Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models. J Agric Food Chem 2002;50:81-6.  Back to cited text no. 15
    
16.Dorman HJ, Deans SG, Noble RC. Evaluation In Vitro of Plant Essential Oils as Natural Antioxidants. J Essent Oil Res 1995;7:645-51.  Back to cited text no. 16
    
17.Son S, Lewis BA. Free Radical Scavenging and Antioxidative Activity of Caffeic Acid Amide and Ester Analogues; Structure - Activity Relationship. J Agric Food Chem 2002;50:468-72.  Back to cited text no. 17
    
18.Coppen PP. The Use of Antioxidants. In: Allen JC, Hamilton RJ, editors. Rancidity in foods. New York, USA. 1983.  Back to cited text no. 18
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Alpinia: the gold mine of future therapeutics
S. Ghosh,L. Rangan
3 Biotech. 2013; 3(3): 173
[Pubmed]
2 Alpinia calcarata Roscoe: A potent antiinflammatory agent
L.D.A.M. Arawwawala,L.S.R. Arambewela,W.D. Ratnasooriya
Journal of Ethnopharmacology. 2012; 139(3): 889
[Pubmed]
3 Alpinia calcarata Roscoe: A potent antiinflammatory agent
Arawwawala, L.D.A.M. and Arambewela, L.S.R. and Ratnasooriya, W.D.
Journal of Ethnopharmacology. 2012; 139(3): 889-892
[Pubmed]
4 The influence of Alpinia calcarata extract on the serum lipid and leptin levels of rats with hyperlipidemia induced by high–fat diet
Sayyed Nadeem,Chanchal Raj,Navin Raj
Asian Pacific Journal of Tropical Biomedicine. 2012; 2(3): S1822
[Pubmed]
5 Essential Oil ofAlpinia calcarataRosc. Rhizome: Heals Inflammation and Nociception in Animal models
Md. Atiar Rahman,Md. Mizanur Rahman,Nazim uddin Ahmed
Journal of Biologically Active Products from Nature. 2012; 2(6): 365
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results and Disc...
    Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1567    
    Printed157    
    Emailed0    
    PDF Downloaded349    
    Comments [Add]    
    Cited by others 5    

Recommend this journal